
www.manaraa.com

Using Eye Tracking and Attention Maps
in Computer Science Education

Austin Edward Pernell

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
Engineering Science
Computer Science

University of Mississippi

2012

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1515342
Copyright 2012 by ProQuest LLC.

UMI Number: 1515342

www.manaraa.com

Copyright c© 2012 by Austin Edward Pernell

All rights reserved.

www.manaraa.com

Abstract

Eye tracking has been used for many different areas of study where a user’s eye move-

ments are considered the most important information available. Before eye tracking was

possible, the only way that information could be obtained was to ask the user where they

looked and what caught their attention. Now, with the rise of eye tracking cameras, this

data can be captured, stored, and processed in a meaningful way. These cameras aren’t

perfectly accurate however and there is still some interpretation that must be applied to

more accurately represent the true gaze path of the user. This paper establishes some basic

ideas to improve the accuracy when reading plain text as well as source code.

ii

www.manaraa.com

Dedication

This work is dedicated to my fianceé, Jessie Vincent.

iii

www.manaraa.com

Acknowledgments

I would like to thank Dr. Yixin Chen for his guidance in my research and for providing

me with the idea for this project and research. His door was always open and he provided

an excellent sounding board for all my ideas. I would also like to thank Ms. Cynthia Zickos

and the students of CSCi 211 for their help in testing my project and providing valuable

data for my research. My thanks to Dr. Jianxia Xue for the idea to implement a cursor to

calculate accuracy. Also, my deepest appreciation goes to my fianceé, Jessie, who pushed

me to finish strong. To my parents goes my gratitude for giving me every opportunity to

succeed in life as well as the resources to do so. My brotherly love goes to my sister for

challenging me to excel in my academics. And finally, I would like to thank all my professors

here at Ole Miss for providing challenging and rewarding courses, as well as making me feel

at home during my time here.

iv

www.manaraa.com

Table of Contents

Abstract ii

Dedication iii

Acknowledgments iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Eye Tracking Uses . 1

1.2 Thesis Objective . 1

1.3 Thesis Contributions . 2

1.4 Thesis Outline . 3

2 Background 4

2.1 Equipment Used . 4

2.2 Terminology . 5

2.3 Concepts . 5

3 Related Work 7

3.1 Comparison of other camera setups . 7

3.1.1 Tracking method . 8

3.1.2 Camera models . 8

3.2 Similar Studies . 10

3.2.1 Usability . 10

3.2.2 Code review and debugging . 10

v

www.manaraa.com

4 Processes 12

4.1 Gaze path playback . 12

4.2 Picking a font size and style . 12

4.3 Assigning a line . 14

4.3.1 Disregarding whitespace . 14

4.4 Incorporating an eye carriage return . 15

4.5 Readjusting the font size . 16

4.6 Double returns . 16

4.7 Taking line length into account . 16

4.8 Adding weight to the next assignment . 19

4.9 Creating the heat histogram . 20

4.10 Following a cursor . 20

4.10.1 Averaging the points within a gaze . 23

4.10.2 Variable cursor size technique . 23

4.10.3 Removing outliers . 25

4.10.4 Only vertical outlier removal . 25

4.10.5 One removal from each axis . 26

4.10.6 Using the median values as the center . 26

4.10.7 Set distance from median removal . 27

4.10.8 Variable cursor size results . 27

4.11 Scrolling . 28

5 Testing and Results 30

5.1 Testing . 30

5.2 Limitations . 43

5.2.1 Iris color . 43

5.2.2 Users wearing glasses . 44

5.3 Results . 44

vi

www.manaraa.com

6 Conclusions 46

6.1 Conclusions . 46

6.2 Future Work . 46

Bibliography 49

Vita 51

vii

www.manaraa.com

List of Figures

Figure Number Page

3.1 Accuracy and Precision . 7

4.1 Raw Gaze Path . 13

4.2 Fitted Gaze Path . 15

4.3 Line Length Selection . 17

4.4 Gaze Path and Fitting Overlay . 21

4.5 Sample Heat Map . 22

4.6 Error Rate in Respect to Cursor Diameter Size 24

4.7 Outlier removal . 28

5.1 Student 1 Gaze Path . 31

5.2 Student 1 Heat Map . 32

5.3 Student 2 Gaze Path . 33

5.4 Student 2 Heat Map . 34

5.5 Student 3 Gaze Path . 35

5.6 Student 3 Heat Map . 36

5.7 Student 4 Gaze Path . 37

5.8 Student 4 Heat Map . 38

5.9 Student 5 Gaze Path . 39

5.10 Student 5 Heat Map . 40

5.11 Student 6 Gaze Path . 41

5.12 Student 6 Heat Map . 42

viii

www.manaraa.com

List of Tables

Table Number Page

5.1 Summary of the students who were tested. 43

5.2 Outlier removal error rates averaged over all the students who were tested. . . . 45

ix

www.manaraa.com

Chapter 1

Introduction

1.1 Eye Tracking Uses

Since the creation of eye tracking cameras, many new applications have arisen to take

advantage of the ability to follow a user’s gaze. The most basic of these applications are

web usability studies. These studies involve tracking the gaze of the user while looking at

a particular website and creating a heat map of that site which can be interpreted as the

length of time the user gazed in a particular location. What can be inferred from the heat

map is what the user actually read and what they ignored. The goal of web usability studies

is to create web pages that minimize the amount of information that the user ignores. Other

applications are more technical and the results must be interpreted by an outside source with

knowledge on the subject. These types of studies are areas like differentiating between a

novice and expert laproscopic surgeon based on eye gaze patterns Law et al. (2004). There

are many applications in between that aid in ways that wouldn’t be possible without an eye

tracking camera, and this work looks to add a new application into that category.

1.2 Thesis Objective

The goal of this research is to incorporate basic eye tracking principles to aid Computer

Science educators in giving more accurate assistance on an individual basis. This depends

on the areas a student might not understand based on their gaze path while viewing the

source code. This is done by creating a heat map in the form of a histogram to represent the

1

www.manaraa.com

length of time a user looked at each line in relation to the overall time looked at the code.

Another map is also created which overlays the fitted gaze path onto the source code. In

this map, the gazes are circles whose sizes are based on the length of time the user fixated

on that point. The combination of these two maps allows the educator to determine if the

gaze path and heat map don’t match up to vital areas in the code in the instance where a

student can not accurately describe what the particular block of code is trying to achieve.

The main problem with trying to come up with maps to represent the users gaze is that

the data that is provided by the eye tracker is not related to the underlying information

where the user is looking. Steps must be taken to determine what is actually being looked

at for each piece of data that the camera provides. This presents a challenge because the

cameras available today are subject to drift error and sub par accuracy for small fonts. In

order to correct for these issues, steps were taken to overcome them and the results will be

presented in this work.

1.3 Thesis Contributions

To solve the problem as mentioned above, using a larger screen as well as a larger font

helped to correct the accuracy issue with smaller letter sizes. However, these steps are by

no means a contribution to the realm of eye tracking. What is a contribution though is

providing a model to follow for helping to more precisely determine the line that the user is

reading. This is done by taking advantage of the fact that the way the English language is

read, and therefore source code as well.

Another contribution this work makes is by describing a two pass median filter for gaze

averaging. It is able to eliminate gazes that are considered too sparse to be accurate and

improves performance over no filter by 17.95% on average.

Other measures are implemented to improve on accuracy and they will also be described

later in this paper.

2

www.manaraa.com

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 describes all the background

information necessary to understand the key aspects in eye tracking. Chapter 3 lays out the

other areas of eye tracking research that are related to this thesis. Chapter 4 documents the

processes developed for this project and techniques used to refine those processes. Chapter

5 covers the testing process used and the results from those tests. Chapter 6 covers the

conclusions and finally, Chapter 7 is the vita.

3

www.manaraa.com

Chapter 2

Background

This chapter covers the background information needed to follow the eye tracking dis-

cussion. This will include the terminology used, as well as the basic concepts implemented

to create the maps.

2.1 Equipment Used

For this research, a 24 inch ViewSonic VX2450wm-LED screen was used for display

purposes. With a larger screen the font size of the source code was able to be increased so

that when read, the accuracy could be increased without significantly reducing the number

of lines available to display as would happen with a smaller screen. A 30 point font size

eventually became the balance between size and accuracy, providing 25 rows of lines to be

displayed at the same time, and it also displayed well over 90 columns of characters. With

the default Linux terminal size being 80 x 24, albeit with the font size much smaller, the

application for displaying code was at least proportional to the standard terminal size. Since

programming convention usually imposes these size limits, the source code displayed on the

screen didn’t need to be modified between a normal size terminal and the output screen.

The camera used was a Mirametrix S2 Eye Tracker. This camera is a portable model

that is able to be placed under the monitor being used. It works by using three infrared

cameras, with one in the middle and one on each end which average the location of the eye.

Once the software has been installed on the machine, a calibration sequence is able to be

run; Mirametrix claims that accuracy is within the range of .5 to 1 degree. The camera also

4

www.manaraa.com

comes with a helpful API to develop custom applications and it is based on the open source

eye gaze interface (Hennessey & Duchowski, 2010). This interface is based on a client-server

architecture with the program created to take advantage of the camera being the client and

the camera itself being the server. Prior to requesting data, the client sets variables based

on the information needed from the camera. Each request and subsequent reply are in XML

string format, and are sent over a TCP/IP connection. However, once data is requested to

be sent, that changes to a UDP model where there is no acknowledgment of data received

by the client, and it is continuously sent from the server regardless of packet loss.

There has been much work done on the lab setup by Pernice (2009) and the lab setting

used for this research tried to follow as much of this as practical. The room used had

overhead lighting and when testing, the blinds were closed to eliminate excessive light and

glare which can lead to drift error. The user was given a chair that was able to be height

adjusted to put the user in the optimal viewing window for the camera. It also had a

reclining back, but was locked into place during use so that motion by the user wouldn’t

lead to any unnecessary head motion which could reduce the effectiveness of the camera.

2.2 Terminology

We will define a gaze simply as the computed position on the computer screen that the

user is focusing. A saccade is defined as a small, jerky movement of an eye from one fixation

to the next. An eye carriage return will be defined as a user’s gaze that is moving from left

to right and then returns to the left to start a new line.

2.3 Concepts

In eye tracking, the main goal is to translate raw eye movement data points into fixation

locations (Salvucci & Goldberg, 2000). However, even while fixating, an eye still moves in

small rapid motions. This presents a problem in distinguishing between the movements in a

fixation and the movement of a saccade. Many cameras will distinguish between these two

5

www.manaraa.com

types of movement before they are sent, but in real time it is hard to interpret this data. So

for this research, processing was done after the capture of all the data. Essentially the eye is

doing one of two things, focusing or moving and usually the data where the eye is moving is

disregarded as insignificant, but in this application, that information can be quite useful.

6

www.manaraa.com

Chapter 3

Related Work

3.1 Comparison of other camera setups

There are many other setups that an educator could use which range from a similarly

made portable bar camera like the one used in this research, to monitors with built in

cameras, as well as headsets for the user to wear. Each camera works well in a particular

setup, and each have their own degree of accuracy and precision. Gaze accuracy is defined as

the average distance from the point being looked at on screen to the point that the camera

returns. As mentioned before as with our Mirametrix camera, accuracy is measured in

degrees. Gaze precision is the amount of variation between multiple trials of looking at the

same point. This is the compactness of the calibration, and essentially, the smallest amount

of pupil movement able to be detected. These concepts are further described in Figure 3.1.

Figure 3.1. The circle on the left represents a gaze with high accuracy, but low precision.
The circle in the middle represents a gaze with high precision, but low accuracy. The circle
on the right is an example of an average gaze returned by the camera, with average accuracy
and precision.

7

www.manaraa.com

3.1.1 Tracking method

There are two types of pupil tracking, bright pupil and dark pupil, each having their

own positives and negatives and ideal conditions. With bright pupil tracking, the eye is

tracked based on the sharpness of the distinction between the pupil and the iris. The more

contrast between the two colors, the easier it is to track the pupil. This works better for

users who have lighter color irises and in darker environments. Dark pupil tracking works

under the same premise, but it uses the infrared camera to change the color of the iris to a

lighter shade, making the dark pupil stand out easier. This method works better in well lit

environments as well as with natural lighting. It is important to make this distinction now,

because it will play a key role later in Chapter 5 in the Limitations section.

3.1.2 Camera models

The SceneCamera from Arrington Research (Arrington, 2011) is a headset model built

for freedom of body movement. The way this device works is by recording the scene viewed

by the user though a small camera on top of the frames and relating eye location to what is

being seen. This type of system is the only way to determine a user’s gaze when a computer

monitor is not the focal point. The SceneCamera tracks using both bright and dark pupil

methods and can measure using the pupil only, corneal reflection, or both for enhanced

accuracy and precision. The accuracy on the camera ranges from .25 to 1 degree, with

.15 degrees of resolution, or precision. Arrington Research notes that better accuracy and

precision numbers can be reported in ideal situations, but their numbers come from normal

testing environments and are more realistic than under ideal conditions. They also state

that small head movements are acceptable, as long as the pupil can be mapped to the image

being viewed by the camera. This type of camera works well because it is only calibrated

once per user, and its portability allows it to be used in many environments, regardless of

lighting conditions. Its accuracy and portability are very comparable to non-headset models,

and could compete in the lab setting as well.

8

www.manaraa.com

A more widely known company in the eye tracking world is Tobii. Tobii produces many

different types of cameras and their comparable camera to the one used in this research

is the X1 Light Eye Tracker (Tobii, 2010). It is a portable bar model, able to be used in

conjunction with any desktop or laptop monitor. It works by viewing the user’s pupils and

mapping that information in a calibration process shown on the screen being used. The

X1 can be used with either bright or dark pupil methods, and a wide range of lighting

conditions. Tobii tests under ideal conditions and are able to achieve a range of .2 to .8

degrees with a median of .4 degrees of accuracy and .15 to .35 degrees of precision with

.21 degrees being the median precision. This compares well to the SceneCamera and comes

with more restricted testing conditions and a lower cost, but higher overhead. Like with the

rest of the models described, these cameras must be recalibrated for each new session with

a user.

Tobii also makes a more precise model, the T60XL Tobii (2011). This is an integrated

camera and 24 inch, 1080p widescreen monitor, using both bright and dark pupil tracking.

It allows a range of head movement of 41w x 21h cm, with no depth movement without

degradation of accuracy and precision. Again, under ideal conditions, this camera can

achieve an accuracy range of .2 to .7 with the median being .4 degrees. The precision is

where this model stands out as it reports precision of .09 degrees using only the raw data,

but a precision of .03 degrees using the Stampe filter 2 (Stampe, 1993). The results achieved

by this model are very tightly compacted gazes, with the accuracy being similar to those of

the other models.

The Mirametrix S2 model that was used in this research is similarly comparable (Mi-

rametrix, 2011). It is a portable bar model and works under the same calibration process

as both the Tobii models. The main drawback is that it only uses the bright pupil tracking

method and this will be discussed later in this work. Allowing a 25w x 11h x 30d cm range

of head movement, Mirametrix claims a range of accuracy of .5 to 1 degrees and a precision

of less than .3 degrees.

9

www.manaraa.com

Each of these cameras have similar accuracy and precision numbers, with the T60XL

standing above the rest in precision. Having that type of precision may have eliminated

some of the processes described in this work, but no matter which camera was used, the

accuracy metrics would still have needed to be put in place.

3.2 Similar Studies

3.2.1 Usability

The paper by Jacob (2003), describes the correlation between eye tracking and web

usability, but it also lays the groundwork for defining eye tracking terminology and ideas.

While usability is different than merely providing assistance based on a user’s scan path,

Jacob notes, “Difficulties relating eye tracking data to cognitive activity is probably the

single most significant barrier to the greater inclusion of eye tracking in usability studies.”

While this statement holds true for many usability studies, this research takes ideas from

those studies and applies them without regard to usability. The paper also states that it is

still necessary to improve tracker accuracy and precision in order to get a firmer grasp on

how to interpret usability results, and that is the goal of this work.

3.2.2 Code review and debugging

The focus of eye tracking in the realms of code review and debugging seek to reveal the

technique differences between novices and experts. The studies focus less on the usability of

the software used in concert with the eye tracking and more on the length of gazes on the

areas of interest and scan path of the user between the source code and debugging tools.

In the research done by Uwano et al. (2006), it is noted that if a user doing code review

for debugging purposes doesn’t spend the proper amount of time reviewing the source code,

it will ultimately take them longer to find the errors. The more novice users tended to

start with the debugger before reviewing the source code, and were not able to pinpoint the

error without going back and scanning the source code. This shows that having an educator

10

www.manaraa.com

review a scan path of a student will be a viable way to improve the knowledge of novice

programmers if they can’t accurately debug a program or explain a concept used in the code

being reviewed.

The work by Bednarik & Tukiainen (2008), deals with the same area and concludes

that,“the retrospective relation of the eye tracking measures to the underlying processing is

hard.” He even admits that in his previous work, that deals with program comprehension

(Bednarik & Tukiainen, 2006), that a new approach must be taken. The goal of this research

isn’t to define the relationship between gaze and cognitive processes, but to simply use the

gaze information as an alternative way to determine deficincies in knowledge. Currently, the

main way of uncovering these deficiencies is to have a student step through a section of code

and for a given input, determine the output. The educator only sees a correct or incorrect

answer with no knowledge of the reason for an incorrect answer. With the additional infor-

mation of scan path and gaze length, if the scan path doesn’t accurately follow the code, or

a key area in the code is completely overlooked, this can benefit the educator in tailoring

individual assistance based on areas deficient in the student’s knowledge.

11

www.manaraa.com

Chapter 4

Processes

In this chapter the methods used and the ways those methods were refined will be

discussed. This chapter is also the timeline of those events and how each discovery grew

from the previous one.

4.1 Gaze path playback

The first step in being able to understand the data was to represent the data visually. In

each line of data sent by the camera was a gaze ID which the camera increments each time

it decides the user has focused on another point. Each unique gaze ID would be represented

by a circle based on the new best gaze for that ID determined by the camera. Each gaze

ID consisted of 1 or more lines which in essence, is the amount of time, or heat, the user

focused on a particular point. Since each gaze ID had an independent number of lines, that

information was applied visually by changing the size of each circle to correspond with the

heat for that gaze ID. Each new gaze ID and representing circle was linked to the previous

with a line denoting the saccade and a series of alternating colors was used to give the

playback a path.

4.2 Picking a font size and style

Initially, the goal was to pick a font size that allowed the eye tracking data to be accurate

on its own without any additional computation. For a calibration considered excellent by

Mirametrix’s standards, this size turned out to be 60 point font. This only allowed 13 lines

12

www.manaraa.com

Figure 4.1. Gaze path where the colored lines and circles are the raw camera data. The lines
are the saccades and the circles are the gazes.

to be displayed at the same time, and much less than 80 columns, so many lines needed to

be either line wrapped, or horizontally scrolled on the screen, effectively compounding the

issue of solely using the font size to correct accuracy errors. With the lines needing to be

wrapped, the number of unique lines was at a maximum of 13, and was usually less which

was due to another programming convention of tabbing blocks of code which increases line

length. When the scroll approach was used, there was so much eye movement toward the

scroll bar that the noise it generated made the data almost unusable. At this point it was

decided that wrapping would be used until the font size could either be decreased or another

solution could be implemented to overcome this problem.

The style of the font that was used was Courier. It is a monospaced, or fixed-width font

which is a traditional source code font believed to increase readability. It was used specifically

in this instance though because of calculation purposes. In order to match the gaze of the

user with a variable-width font, calculations would have to be done on each character on a

line in order to determine width, and this would introduce unnecessary overhead. With a

13

www.manaraa.com

monospaced font, the length of a line can be calculated by finding the width at the start of

the program and then by simply multiplying the number of characters by that width.

4.3 Assigning a line

Next came the task of trying to determine the line being looked at for a particular gaze.

Even with the large font size of 60, assigning a line to each gaze wasn’t inherently any easier

due to imperfect calibration and drift error. At this point, only the line on the screen, which

corresponded to the coordinates given in the data, was calculated. This consisted of taking

each gaze ID’s best gaze location and incrementing the count for the number of times that

line was looked at by 1. This was not intended to represent the heat for a line, just the

number of gazes calculated to be looking at a line. The assignment errors were based on

the fact that the user would read every line in the source code and skip any lines that were

blank. This could also be double checked by following the gaze path display and seeing

where an assignment was missed. For a piece of source code with 13 lines, none of them

wrapped, and 5 whitespace lines in the text the simple assignment got the line of each gaze

correct 80% of the time. This was a decent preliminary number, and a good place to start

from, but the accuracy needed to improve and the font size needed to come down.

4.3.1 Disregarding whitespace

One easy way to improve accuracy was to prevent the program from assigning heat to

a line that was entirely whitespace or only had a single bracket on a line. The algorithm

then had to decide where the next two closest lines were on the vertical axis. Once those

were found, the shorter of the two distances were selected and that line got the credit for

that particular point. This eliminated the errors where a blank, or almost blank line was

receiving credit for a gaze. When in reality, it was the event where an accidental fixation was

placed in the middle of a saccade between two actual fixations. Without having a definitive

way of determining if the fixation was accidental, assigning it to the next closest line was

14

www.manaraa.com

Figure 4.2. Gaze path where the black lines and circles are the fitted data with eye carriage
return exploit. The raw data used for this fit is the same data used in figure 4.1. Each line is
read only once and in order from top to bottom.

the most viable way of preventing an incorrect assignment.

4.4 Incorporating an eye carriage return

After visually double checking many trial runs for errors, a pattern soon became apparent.

An eye carriage return, as previously defined, was noticeable on almost every line. This is

when it was realized that an exploit could be made in the way the English language is read,

from top to bottom and from left to right. Now, even where in source code, we may not

always read from top to bottom, we do always read from left to right, so using that fact gave

the algorithm a way to determine line separations. The focus now changed from assigning

each gaze to a line, to assigning a string of average gazes to a particular line. Of course, this

all had to be done after all the data had been taken, but with averaging not being a heavy

computation, the results were still instant.

15

www.manaraa.com

4.5 Readjusting the font size

Once the goal became line assignment over a series of averaged gazes, it was then possible

to decrease font size while maintaining accuracy. In the beginning, it was necessary for the

font size to be much larger because individual points, with no other reference to ones before

or after it, were harder to assign. Then, once the eye carriage return exploit took advantage

of that information, a more accurate guess could be made. While larger font sizes would

provide a bigger range for accuracy, the problem was still trying to keep any lines from being

wrapped, and getting more information on the screen without having to scroll vertically. As

mentioned in Chapter 2, a font size of 30 rose to the top for its balance of size and accuracy.

It was chosen because it was the largest font that could be used without showing less lines

than a standard terminal.

4.6 Double returns

Now a new problem arose, where just like before, an accidental fixation after an eye

carriage return would cause a single gaze to be represented as a line. However, where before

there was no way of determining if it was accidental, it could now be determined that the

gaze was a mistake in this instance. This conclusion came because after an eye carriage

return, the eyes should next focus on the start of a line, which is the farthest left point of

that line. If that gaze was followed by another gaze even farther to the left, the user was not

reading anything at that point that could accurately be detected, and they were more likely

just focusing for the purpose of finding the start of the next line. These type of accidental

fixations rarely occurred, so omitting them only slightly positively affected the results.

4.7 Taking line length into account

Since it was determined that the algorithm would be basing a string of gazes on the line

being looked at, another pattern arose. The last gaze before a carriage return was always

close to the end of the line being looked at on a horizontal axis, not always the vertical.

16

www.manaraa.com

Figure 4.3. The red circle represents the last gaze before an eye carriage return. The orange
number is its position on the horizontal axis. The green numbers are the ending positions
on the horizontal axis. The formulas are shown on the right; line length - gaze position =
difference * multiplier = weight.

This information could now be incorporated into the decision making process for a positive

effect. For the line that was initially guessed, the two lines, whether valid or not, both above

and below were taken into consideration for a total of five lines. For each, the distance was

taken between the last point on that line, and the last actual gaze by the user. If a line was

entirely whitespace and essentially invalid, then it was thrown out in the calculations, and

not considered. Then each absolute value was taken and those became the starting points

for comparison.

For the line initially guessed by the line average alone, no further calculations were done

to that value. Its distance from the gaze was its weight. For the line two positions above

the currently guessed line, its distance value was tripled. The idea behind this was that the

error of the average should not be off by two lines worth of distance, but it should still be

considered at a discounted value. For the line two positions below the currently guessed line,

its distance value was multiplied by 2.75 times. The reason for the difference between two

lines above and two lines below was again the reading principle that was exploited earlier.

We tend to read from top to bottom, so the line two spots below should be discounted a little

less because it is slightly more likely that the user is reading it, however it is still penalized

because there should not be two lines worth of error in the system with proper calibration.

Now, for the lines directly above or below the guessed line, the multipliers are 2.5 and 1.5

respectively. The reason for the whole point jump lower instead of a .25 decrease is again

17

www.manaraa.com

because of the exploit. The two most likely lines are the line initially guessed and the line

below it, so they should be the most similar to their original distance values in order to have

them selected more accurately.

All this means is that the algorithm is the most confident in the initially guessed line as

represented by the average, but other options are also being considered, even if they are at

a discounted rate. Once all the calculations are complete, the lowest weight represents the

line that is the most probable to being the true line the user was looking at. It seems as if

no other lines would ever be picked over the initial guess, however, with tabbed blocks of

code, line lengths tend to vary from one line to the next, and that discrepancy became the

key point in this heuristic.

If the initial line guessed is actually correct, then the distance between its length and

the location of the last gaze should be very small. It would only be overturned if there

was another line that matched the distance to the location even closer after discounting the

distances. This situation almost occurs in Figure 4.3, but the initially guessed line has just

a slightly lower weight after discounting. This would have been a false negative with respect

to the initially guessed line had it not been selected. This rarely happens due to a number

of different factors including line averaging, character size, line length, and the discounting

process. What happens more frequently though is when the line guess is actually incorrect

and the true line filters up to the top and is chosen. The same principle applies in the

previous situation, it is just in reverse. The line incorrectly guessed will more than likely

have a distance that is not similar to the gaze position, but the true line will have a distance

that is very similar. With it being so similar, even by multiplying it by a weight doesn’t

increase the value to be larger than the incorrectly guessed line.

Taking the line length and respective distance to the gaze into consideration wouldn’t

make much of a difference if the lines were all relatively the same length like in a book, but

source code is different. Each expression is normally placed on an separate line and with

indentation conventions, lengths tend to vary enough to be exploited. This technique is a

18

www.manaraa.com

key rule in the algorithm, and works as long as the source code being viewed holds to those

conventions. However, this technique doesn’t always favorably help in the reverse case by

taking the starting position into account. This is not because the information would not be

useful, it is because of a possible camera limitation. If the user slowly reads to the end of

one line, performs an eye carriage return, and begins reading immediately, the values sent

by the camera tend to be much farther to the right than the true starting point of the user.

This could be because of camera lag, or the way we read words and not individual letters.

Regardless, comparing these starting positions in relation to the starting positions of the

lines negatively affect the calculations because blocks of code are nested, and therefore, all

start at the same tabbed position. The differences in indentation levels come from two lines

where they are not tabbed to the same starting position. If the data sent is farther right

than the line truly being viewed, that line would be discounted. And if a line in the same

neighborhood started at that position, it would have a better chance of being selected on

that fact. This would increase the number of false negatives, and therefore, it is not used in

the current algorithm.

4.8 Adding weight to the next assignment
In addition to using a heuristic to adjust for line length, a separate heuristic can be used

to further help the true line be selected. By keeping track of the last line that was selected,

when the next selection comes around, the lines below that last line can have some distance

taken off of their true values. This increases the line’s chance to be selected. For instance,

if the last line was nine, then more than likely, line ten will be the next one read, as long

as it is valid. In order to account for the fact that line ten may very well be whitespace, by

taking the last line and subtracting the initial, unmodified guess, the difference between the

two lines is the result. If that number matches up to any of the lines being put through the

length heuristic, a set number is subtracted given that is no larger than its current distance

value. However, if it is, then it is automatically selected as then guessed line.

19

www.manaraa.com

This heuristic can reinforce that the guessed line is the correct line, or it can bring

light to the fact that it is more likely a line below that is the correct line even though

it may have been penalized in the first line length heuristic. This isn’t to say that it was

incorrectly penalized, it is just due to the fact that this camera cannot be perfectly calibrated

and calibration varies between each use and each user. The other lines in the region are

considered but discounted, yet not at a rate that would automatically disqualify them. This

weight subtracted based on the previous line selected only further allows the correct line

to be chosen and doesn’t increase the false negative rate by a substantial amount. These

two heuristics only produce false negatives in extreme situations which can’t be taken into

account as normal occurrences.

4.9 Creating the heat histogram

Once these measures were put into place to ensure the correct line would be selected for

a series of gazes, the next step was to take all of the assignment information and turn it into

useful data. This data can be thought of as a histogram heat map. Each line in the source

code is considered and for every time the user looks at that line, a counter is incremented

by the length of the gaze upon that line. This gives a total count of where every single

gaze was assigned. Then percentages are taken based on a line’s heat and the overall time

spent looking at the entire source code. When the percentages are displayed in a horizontal

fashion, it is very obvious where the user spent the most time looking and this can be seen

in Figure 4.5. This can help an educator point out areas to the student that may have been

more vital to that code block if they weren’t looking at the right group of lines or couldn’t

explain some of the concepts in the code.

4.10 Following a cursor

In the original test of assigning each individual gaze to a line, the program had no explicit

way of knowing if its assignments were correct or incorrect. It took the user who was reading

20

www.manaraa.com

Figure 4.4. Gaze path and fitting where the colored lines and circles are the raw camera data
and the black lines and circles are the fitted data with various exploits.

21

www.manaraa.com

Figure 4.5. Sample heat map for the gaze path sample in figure 4.4.

22

www.manaraa.com

the source code to state where they were looking at each point given by the camera. There

needed to be a way to leave all the ground truth with the program so the error rate could be

automatically calculated and displayed. It was decided the best way to do this was a cursor.

The source code would be displayed and a circle would float directly on top of each row for

the user to follow. This way, the program would know exactly where the user should be

looking as well as where they were actually looking. On the first implementation, the cursor

size was chosen as an arbitrary number of 50 pixels in diameter. It was selected by drawing

different sized circles around the characters and selecting a number that encompassed those

characters without too much overlap on top of adjacent characters.

4.10.1 Averaging the points within a gaze

Initially, accuracy was poor for a fixed cursor size and it became necessary to average all

the points within that gaze. The way the camera works is that it determines the best point

of gaze for each unique gaze as the first point separated from the last gaze by a saccade. This

doesn’t always represent the true center of a gaze, so by averaging, a more stable center can

be used in comparisons and calculations. This improved the accuracy, on average 10.12%,

which meant that the camera was returning a best point of gaze that was very close to the

center of that gaze, but it wasn’t always correct. The change in the center, or best point of

gaze, can be seen in Figure 4.7.

4.10.2 Variable cursor size technique

At this point, testing on a fixed cursor size, changing anything in the algorithm only

resulted in finding out if those changes worked for that specific cursor size. It became

necessary to test on multiple sizes, and that was the next step in the process. Instead

of rerunning the algorithm for each cursor size, the data was reused and the diameter of

the cursor was changed by the algorithm in each iteration. This generated a curve that

determined the accuracy based on cursor size. This allowed the changes made to be seen in

an overall view, instead of a localized one.

23

www.manaraa.com

Figure 4.6. Error Rate in Respect to Cursor Diameter Size

24

www.manaraa.com

4.10.3 Removing outliers

Another way to improve accuracy was to remove the data within a gaze that the camera

sent as valid, because some of those points were actually outliers. In the XML string sent by

the camera, a flag is included that determines whether or not the camera thinks the point is

valid. After inspecting a group of lines that it set as either valid or invalid, it became clear

that the camera wasn’t accurately determining validity. Some lines were duplicated yet had

different validity flag settings. The data sent was sometimes off by a line or two and it could

not be determined if that was a problem that resulted in poor timing in the sending of the

data, or an issue with the camera itself. Therefore, the algorithm had to accept everything

as valid, but make the determination whether or not a point was valid instead of relying

on the camera for that information. Multiple techniques were implemented to pick outliers,

and each had their own strengths and weaknesses, but one eventually rose to the top.

4.10.4 Only vertical outlier removal

The first step was to test a one pass outlier removal on the vertical axis. The camera

results as displayed on the screen showed much more vertical noise than horizontal, so that

is why the vertical axis was chosen. First, for each gaze ID, all the data was ordered by the

vertical axis and the median was chosen. Now, with the font size still being 30, this gave

a row height of 40 pixels, so the bar set for being an outlier was a radius of 20. This is

because a point in the middle of the character is selected, anything greater or less than 20

pixels from that point on the vertical axis became another character. Essentially, this made

all the data points that were kept, within a character distance of each other on the vertical

axis. This tightened up the average a good amount, by 14.16% on average from the raw

data alone and by 4.04% over averaging the points of the gaze together, but if the median

wasn’t near the cursor center on the vertical axis, this wasn’t going to correct the error rate

significantly. This would turn out to be the second best performer, even though it was the

first test that was tried.

25

www.manaraa.com

4.10.5 One removal from each axis

The next step was to test how well a two pass removal would work, removing one data

point from each axis, starting with the vertical pass and then moving to the horizontal pass.

Instead of removing everything over a set bar, exactly one outlier was taken in each pass

regardless. The value that was taken was the furthest from the median on each respective

axis. The problem was, that if the true median on the horizontal axis was considered an

outlier on the vertical axis and it was removed, it shifted the true center of the gaze. This

test only slightly improved the error rate, by about 1.18% over the averaging heuristic, and

it was in instances where there were true outliers that skewed the average enough to generate

an error.

4.10.6 Using the median values as the center

Trying to approach the issue of accidental shifting of the center from a different angle,

the next test was to keep only the median values on each axis as the center values, with

no averaging needed. This technique didn’t work as well in this research as it might have

in others because the points for each gaze ID were sometimes very spread out. If the point

selected as the true center by the median values was actually an outlier itself, there was no

way to remove it, and this is why averaging helped to find the center in a much more stable

way. The curve produced by this technique very closely followed the curve for averaging

alone, and there were some instances where it was slightly better and slightly worse. It

improved averaging by about 0.13% and improved over the raw calculation by 9.31%, on

average. The reason for it being either slightly better, or even slightly worse was that in the

cases it correctly picked the center, outliers were removed, and the results improved. In the

case where it incorrectly picked the center, and was actually an outlier, it added noise and

therefore errors to the results, making them worse than averaging would have. Even so, it

was a useful test to run to figure out that the points in some gaze IDs were very sparse and

this could now be used to improve the results even further.

26

www.manaraa.com

4.10.7 Set distance from median removal

Upon seeing that some gazes tended to be sparse, and not good candidates for being

valid, a method to remove these points was needed. Taking from the results of vertical

removal with a bar, and coupling it into a two pass removal, the result was better than

only a one pass removal. At this point, the bar was still a size of 20, but having previously

automated the size of the cursor, fitting the size of the optimal bar in the same way was

simple. It turned out that the highest accuracy curve came when the bar was of size 3 pixels

and this was tested against multiple samples of data from multiple users. It improved over

the raw data by 17.95% and over the averaged heuristic by 8.3% on average.

The way the two pass system worked was by ordering all of the points based on the

vertical coordinate and marking every distance that was farther than 3 pixels from the

median. Then the points were re-ordered by the horizontal axis and the same test was

performed. After both tests had been run, each point that had been marked was removed

and then the average was taken with the remaining points. In many cases, the pass on

the vertical coordinate would mark the median on the horizontal axis and the pass on the

horizontal course would mark the median of the vertical axis, and in both passes each would

mark every other point for that gaze leaving no points to be averaged. This is how the

sparsely grouped gazes were considered invalid. If not enough of the points were in a tightly

compacted group, then the algorithm would remove them from being tested. If there were

still points in a gaze after the outliers were removed, they would be very compact and give

a good representation of the center of that gaze and be more likely to be closer to the center

of the cursor than in any other technique used.

4.10.8 Variable cursor size results

After each technique had been plotted with the variable cursor it was shown that in order

to get a letter by letter accuracy of 85%, a circle with a diameter of 2.5 times the height

of the 40 pixel tall, 30 point font character had to be used. This reiterated the point that

27

www.manaraa.com

Figure 4.7. Examples of outlier removal. Black points are data that were kept. Red are data
that were removed. Blue is the best point of gaze as reported by the camera. Green is the
new best point of gaze as computed by each removal heuristic, if applicable.

either word, or in the case of this particular research, line accuracy was a more achievable

goal.

4.11 Scrolling

In the instances of scrolling, either vertically or horizontally, the algorithm was set to

act as if an eye carriage return had been done by the user. This took all of the data up until

that point and averaged it as if the user had begun looking at a new line. In order to scroll

vertically, the user had to click a large button on either side of the code that ran the entire

length of the screen. So to do that, they would usually look once to the button they wished

to use, and then refocus on the code. Each time the button was clicked, the code would

move by exactly one line, and the algorithm would assign the current gaze to a line being

shown on the screen. Since the user was focusing on the code as it scrolled up in order to

find what they were searching for, these gazes circles were very small and were accurately

28

www.manaraa.com

placed onto the corresponding line. Scrolling horizontally worked in the same fashion, but

it occurred much less frequently due to the code not normally extending past 80 characters.

29

www.manaraa.com

Chapter 5

Testing and Results

5.1 Testing

Since the goal of this project was to create a program to aid Computer Science educa-

tors in tailoring assistance on a case by case basis, the obvious testing group was students

currently enrolled in courses on programming. Students in upper-level Java (who were also

enrolled in the laboratory) were emailed and asked to participate in the research. They were

given extra credit on a laboratory assignment if they agreed to help. Of the 15 enrolled in

the course at the time, 6 agreed and scheduled times to test the system. On arrival, it was

explained to the students how the testing would proceed. They would calibrate the camera

as many times as necessary to get a good initial setup and then they would be shown the

source code. The first few runs with the source code would be done with the cursor, and we

would proceed after they felt comfortable with the speed of the cursor. Then, the next run

would be reading every line from top to bottom with no cursor, skipping any whitespace.

The last run the students were instructed to read the code, again with no cursor, with the

intent of describing what the code was intended to do, after they had completed reading it.

They were told to read just as they would in a debugging situation, trying to find an error

in the logic. This test was only to see how students actually read code, not to determine

any accuracy numbers. The following figures are examples of the students reading the code,

with no cursor, to be able to describe what the code does.

30

www.manaraa.com

Figure 5.1. Gaze path for Student 1.

31

www.manaraa.com

Figure 5.2. Heat map for the gaze path for Student 1 in figure 5.1.

32

www.manaraa.com

Figure 5.3. Gaze path for Student 2.

33

www.manaraa.com

Figure 5.4. Heat map for the gaze path for Student 2 in figure 5.3.

34

www.manaraa.com

Figure 5.5. Gaze path for Student 3.

35

www.manaraa.com

Figure 5.6. Heat map for the gaze path for Student 3 in figure 5.5.

36

www.manaraa.com

Figure 5.7. Gaze path for Student 4.

37

www.manaraa.com

Figure 5.8. Heat map for the gaze path for Student 4 in figure 5.7.

38

www.manaraa.com

Figure 5.9. Gaze path for Student 5.

39

www.manaraa.com

Figure 5.10. Heat map for the gaze path for Student 5 in figure 5.9.

40

www.manaraa.com

Figure 5.11. Gaze path for Student 6.

41

www.manaraa.com

Figure 5.12. Heat map for the gaze path for Student 6 in figure 5.11.

42

www.manaraa.com

Student Eye Color Glasses Ability Level Time Spent Considering Code
1 Hazel No Excellent 53.6 seconds
2 Blue Yes Average 27.8 seconds
3 Blue No Excellent 79.4 seconds
4 Brown No Poor 51.3 seconds
5 Blue No Average 29.5 seconds
6 Brown No Average 24.4 seconds

Table 5.1. Summary of the students who were tested.

5.2 Limitations

The limitations that follow are system dependent, and not necessarily able to be generally

applied to all eye tracking systems.

5.2.1 Iris color

One of the biggest limitations in the testing process was on eye color and this was due

to the fact that the S2 camera uses only the bright pupil tracking method. Of the students

tested, only 2 had unusual difficulty in calibrating to the camera and both had very dark

irises. Prior to the calibration process, the software provided with the camera displays a

window so that the user can get situated and see if their eyes are within the viewing range.

In this window, the software places a green and red square around each eye and then in

two smaller windows, the left and right eyes are tracked separately. Each of these windows

are displayed in grayscale, just as the camera sees. During this time, if the camera loses

track of either eye, that window turns completely red. In both of situations, the camera lost

track significantly more than it had with other users. Upon closer examination of users with

lighter iris color, there was a very distinct color that represented the iris and the white color

that represented the pupil of the eye. In the cases where calibration was difficult, the color

difference between the iris and the pupil was almost impossible to differentiate. This is how

the camera detects a pupil, it finds the whitest areas in the viewing window and hopefully

finds the sclera, which is the white area surrounding the iris. Then it tries to detect a darker

area within that white area, which is the iris. If it can not find the now brightened pupil

43

www.manaraa.com

inside the dark iris, it assumes that it is not focusing on the eye, and continues to search.

This throws off the calibration process by a great deal and even if the calibration process

can be completed with a satisfactory accuracy, it is very likely that it will continue to search

during the testing phase because it doesn’t feel confident of its lock onto the pupil.

5.2.2 Users wearing glasses

In the instances where users wore glasses, some of the same similarities arose, however

they were not nearly as frequent nor as degrading to accuracy as dark irises. The main

problem that arose from glasses was that when there was a glare on either lens, the camera

may or may not lose the lock it had on that eye. It was usually only in the case where the

glare obscured the pupil, and even then, with just a slight head movement, that problem

was eliminated. So, glasses may be a slight limitation, but in any setup where glare on the

lens is an issue, this will cause temporary problems, not just in the setup for this work with

the Mirametrix S2 camera.

5.3 Results

The easily and accurately measurable results achieved from this work were from the

testing done with the cursor. Every metric that was implemented, measured against the

raw data from the camera alone, showed improvements. Using the averaging technique

was a baseline for performance improvement and continued to be used in conjunction with

every outlier metric implemented. Each of those also showed improvements from that new

baseline, though some were more successful than others. Across all users, the metric that

showed the highest rate of accuracy was the two pass median filter with a distance of 3

pixels. The reason this metric performed so well was that it was able to entirely eliminate

gazes that were not compact, and therefore, not as reliable in their validity.

44

www.manaraa.com

Cursor Size Raw Averaging Median as Center One Removal Only Y Two Pass
0 99.96 100 100 100 100 100
20 93.71 99.28 93.48 97.46 90.58 91.52
50 70.39 71.01 62.68 68.48 58.33 54.55
80 44.43 38.41 34.42 34.06 28.62 26.67
100 32.47 22.83 23.19 21.38 18.12 14.55
150 15.34 11.96 10.51 9.78 8.33 8.48
200 8.89 6.16 6.88 4.71 4.71 4.85

Table 5.2. Outlier removal error rates averaged over all the students who were tested.

45

www.manaraa.com

Chapter 6

Conclusions

6.1 Conclusions

With the goal of this work being to aid Computer Science educators with an eye tracking

program, that goal was met and contributions to knowledge in the field of eye tracking

were made. It was shown that when the focus of the eye tracking was source code, there

were several exploits that lent themselves to improving the accuracy of the camera. One

of the more substantial advantages gained was by creating rules for finding eye carriage

returns in a scan path. This was able to be further refined by adding weight to guesses

based on line length and gaze location as well as adding additional weight based on reading

tendencies. When testing accuracy while following a cursor, two improvements further

improved reliability and those were averaging and outlier removal. All of these techniques

improved overall line assignment accuracy as well as taking a step toward improving word

and character accuracy.

6.2 Future Work

This work has yet to be implemented in a lab setting on a regular basis, but it is feasible

to be used in that way in its current state. An instructor or an assistant would need to be

briefed on calibration techniques and limitations with the current camera and laboratory

setup. Even though the results are fairly straightforward, a quick explanation of the meaning

of the results would be beneficial as well. Both of these short topics could be put into a

46

www.manaraa.com

user’s manual along with other information required to perform the different tests described

in this work.

Additionally, other projects could take advantage of this work and the improved accuracy

techniques. Popular avenues for hands free programs are accessibility and video games. In

the realm of accessibility, users who are physically unable to type could benefit from an on

screen keyboard and mouse that rely on eye tracking. And through use in video games,

the accuracy techniques in this research can be further refined for use in situations where

reading is not the main goal. In the ever growing field of eye tracking, there are many other

projects that could use this research, but hopefully this work will continue to be improved

upon in its own right.

47

www.manaraa.com

Bibliography

48

www.manaraa.com

Bibliography

Arrington (2011) “Arrington SceneCamera System Specifications.” Arrington Research
Inc. 8

Bednarik, R. & Tukiainen, M. (2006) “An eye-tracking methodology for characterizing
program comprehension processes.” In Proceedings of the 2006 symposium on Eye tracking
research & applications, ETRA ’06, pages 125–132, New York, NY, USA. ACM. 11

Bednarik, R. & Tukiainen, M. (2008) “Temporal eye-tracking data: evolution of de-
bugging strategies with multiple representations.” In Proceedings of the 2008 symposium
on Eye tracking research & applications, ETRA ’08, pages 99–102, New York, NY,
USA. ACM. 11

Hennessey, C. & Duchowski, A. T. (2010) “An open source eye-gaze interface: ex-
panding the adoption of eye-gaze in everyday applications.” In Proceedings of the 2010
Symposium on Eye-Tracking Research & Applications, ETRA ’10, pages 81–84, New
York, NY, USA. ACM. 5

Jacob, R. (2003) “Eye tracking in human-computer interaction and usability research:
Ready to deliver the promises.” Mind. 10

Law, B.; Atkins, M. S.; Kirkpatrick, A. E.; & Lomax, A. J. (2004) “Eye gaze
patterns differentiate novice and experts in a virtual laparoscopic surgery training envi-
ronment.” In Proceedings of the 2004 symposium on Eye tracking research & applications,
ETRA ’04, pages 41–48, New York, NY, USA. ACM. 1

Mirametrix (2011) “Mirametrix S2 Product Sheet.” Mirametrix Inc. 9

Pernice, N. (2009) “Eyetracking Methodology: How to Conduct and Evaluate Usability
Studies Using Eyetracking.”. 5

Salvucci, D. D. & Goldberg, J. H. (2000) “Identifying fixations and saccades in eye-
tracking protocols.” In Proceedings of the 2000 symposium on Eye tracking research &
applications, ETRA ’00, pages 71–78, New York, NY, USA. ACM. 5

Stampe, D. (1993) “Heuristic filtering and reliable calibration methods for video-
based pupil-tracking systems.” Behavior Research Methods, Vol. 25, pp. 137–142
10.3758/BF03204486. 9

49

www.manaraa.com

Tobii (2010) “Tobii X1 Product Description.” Tobii Technology AB. 9

Tobii (2011) “Tobii T60XL Product Description.” Tobii Technology AB. 9

Uwano, H.; Nakamura, M.; Monden, A.; & Matsumoto, K.-i. (2006) “Analyzing
individual performance of source code review using reviewers’ eye movement.” In Proceed-
ings of the 2006 symposium on Eye tracking research & applications, ETRA ’06, pages
133–140, New York, NY, USA. ACM. 10

50

www.manaraa.com

Vita

Austin Edward Pernell was born just outside of Boston, Massachusetts, on August 4th,

1988 to Jerry and Tammi Pernell. He was raised in Crossville, Tennessee and was lucky

enough to have a family computer. After becoming fascinated with all the computer could

do, he took two courses in programming once he entered high school. Upon enrolling in

Computer Science at Tennessee Technological University in 2006, he excelled in the program

and graduated at the top of his class. He decided to pursue his Master’s Degree from Ole

Miss in the fall of 2010.

51

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	1 Introduction
	1.1 Eye Tracking Uses
	1.2 Thesis Objective
	1.3 Thesis Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Equipment Used
	2.2 Terminology
	2.3 Concepts

	3 Related Work
	3.1 Comparison of other camera setups
	3.1.1 Tracking method
	3.1.2 Camera models

	3.2 Similar Studies
	3.2.1 Usability
	3.2.2 Code review and debugging

	4 Processes
	4.1 Gaze path playback
	4.2 Picking a font size and style
	4.3 Assigning a line
	4.3.1 Disregarding whitespace

	4.4 Incorporating an eye carriage return
	4.5 Readjusting the font size
	4.6 Double returns
	4.7 Taking line length into account
	4.8 Adding weight to the next assignment
	4.9 Creating the heat histogram
	4.10 Following a cursor
	4.10.1 Averaging the points within a gaze
	4.10.2 Variable cursor size technique
	4.10.3 Removing outliers
	4.10.4 Only vertical outlier removal
	4.10.5 One removal from each axis
	4.10.6 Using the median values as the center
	4.10.7 Set distance from median removal
	4.10.8 Variable cursor size results

	4.11 Scrolling

	5 Testing and Results
	5.1 Testing
	5.2 Limitations
	5.2.1 Iris color
	5.2.2 Users wearing glasses

	5.3 Results

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Vita

